Quantum algorithms for the generalized eigenvalue problem
نویسندگان
چکیده
The generalized eigenvalue (GE) problems are of particular importance in various areas science engineering and machine learning. We present a variational quantum algorithm for finding the desired GE problem, $\mathcal{A}|\psi\rangle=\lambda\mathcal{B}|\psi\rangle$, by choosing suitable loss functions. Our approach imposes superposition trial state obtained eigenvectors with respect to weighting matrix $\mathcal{B}$ on Rayleigh-quotient. Furthermore, both values derivatives functions can be calculated near-term devices shallow circuit. Finally, we propose full eigensolver (FQGE) calculate minimal gradient descent algorithm. As demonstration principle, numerically implement our algorithms conduct 2-qubit simulation successfully find eigenvalues pencil $(\mathcal{A},\,\mathcal{B})$. experimental result indicates that FQGE is robust under Gaussian noise.
منابع مشابه
Trust-region algorithms for the generalized symmetric eigenvalue problem
The generalized eigenvalue problem
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولHeuristic and exact algorithms for Generalized Bin Covering Problem
In this paper, we study the Generalized Bin Covering problem. For this problem an exact algorithm is introduced which can nd optimal solution for small scale instances. To nd a solution near optimal for large scale instances, a heuristic algorithm has been proposed. By computational experiments, the eciency of the heuristic algorithm is assessed.
متن کاملEfficient use of the Generalized Eigenvalue Problem
We analyze the systematic errors made when using the generalized eigenvalue problem to extract energies and matrix elements in lattice gauge theory. Effective theories such as HQET are also discussed. Numerical results are shown for the extraction of ground-state and excited B-meson masses and the ground-state decay constant in the static approximation.
متن کاملImplicitly Restarted Generalized Second-order Arnoldi Type Algorithms for the Quadratic Eigenvalue Problem
We investigate the generalized second-order Arnoldi (GSOAR) method, a generalization of the SOAR method proposed by Bai and Su [SIAM J. Matrix Anal. Appl., 26 (2005): 640–659.], and the Refined GSOAR (RGSOAR) method for the quadratic eigenvalue problem (QEP). The two methods use the GSOAR procedure to generate an orthonormal basis of a given generalized second-order Krylov subspace, and with su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Information Processing
سال: 2021
ISSN: ['1573-1332', '1570-0755']
DOI: https://doi.org/10.1007/s11128-021-03370-z